Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 619
Filtrar
1.
Medicine (Baltimore) ; 103(16): e37860, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640320

RESUMO

Staphylococcus aureus is an important human pathogen that has a major impact on public health. The objective of the present work was to determine the prevalence and the pattern of antibiotic susceptibility in S aureus (MRSA) isolates from the King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia. The isolates were collected from different body sites of infection and the antibiotic susceptibility was confirmed on the Vitek 2 system. A total of 371 MRSA isolates from clinical samples were received over a 12-month period from January 2021 to December 2021. The results showed that infection was predominant among males (55.8%) and most of the isolates occurred in the older age groups, with a mean age of 43.7 years and an age span from <1 to 89 years old. The majority (34.5%) recovered from wound infection followed by (14.6%) from blood. We have observed peaks of MRSA infections during the autumn, especially in September and November. All MRSA isolates were resistant to Amoxicillin + clavulanic acid, Ampicillin, Imipenem, Oxacillin, Cloxacillin, and Penicillin while all isolates were sensitive to Daptomycin and Nitrofurantoin. Furthermore, Vancomycin was resistant in (0.3%) of MRSA isolates, and (2.9%) was resistant to Linezolid. The current study concluded that MRSA strains had developed resistance toward 24 tested antibiotics, including the previous effective drugs vancomycin and linezolid. Therefore, there is an urgent need for continuous review of infection control practices to prevent any further spread of resistant strains.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Masculino , Humanos , Idoso , Adulto , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Vancomicina/farmacologia , Linezolida/farmacologia , Arábia Saudita/epidemiologia , Centros de Atenção Terciária , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia
2.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587823

RESUMO

AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.


Assuntos
Acroleína , Acroleína/análogos & derivados , Antibacterianos , Corynebacterium , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Monoterpenos , Óleos Voláteis , Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Acroleína/farmacologia , Monoterpenos/farmacologia , Cimenos/farmacologia , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Vancomicina/farmacologia , Linezolida/farmacologia , Limoneno/farmacologia , Eucaliptol/farmacologia , Timol/farmacologia , Clindamicina/farmacologia , Humanos , Penicilinas/farmacologia , Terpenos/farmacologia , Cicloexenos/farmacologia , Infecções por Corynebacterium/microbiologia
3.
Microbiome ; 12(1): 52, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481333

RESUMO

BACKGROUND: The rise of linezolid resistance has been widely observed both in clinical and non-clinical settings. However, there were still data gaps regarding the comprehensive prevalence and interconnections of linezolid resistance genes across various niches. RESULTS: We screened for potential linezolid resistance gene reservoirs in the intestines of both humans and animals, in meat samples, as well as in water sources. A total of 796 bacteria strains out of 1538 non-duplicated samples were identified to be positive for at least one linezolid resistance gene, optrA, poxtA, cfr, and cfr(D). The prevalence of optrA reached 100% (95% CI 96.3-100%) in the intestines of pigs, followed by fish, ducks, and chicken at 77.5% (95% CI 67.2-85.3%), 62.0% (95% CI 52.2-70.9%), and 61.0% (95% CI 51.2-70.0%), respectively. The meat and water samples presented prevalences of 80.0% (95% CI 70.6-87.0%) and 38.0% (95% CI 25.9-51.9%), respectively. The unreported prevalence of the cfr(D) gene was also relatively higher at 13.0% (95% CI 7.8-21.0%) and 19.0% (95% CI 10.9-25.6%) for the feces samples of ducks and pigs, respectively. Enterococci were the predominant hosts for all genes, while several non-enterococcal species were also identified. Phylogenetic analysis revealed a significant genetic distance among linezolid resistance gene reservoirs, with polyclonal structures observed in strains within the same niche. Similar genetic arrays harboring assorted insertion sequences or transposons were shared by reservoirs displaying heterogeneous backgrounds, though large diversity in the genetic environment of linezolid resistance genes was also observed. CONCLUSIONS: The linezolid resistance genes were widespread among various niches. The horizontal transfer played a crucial role in driving the circulation of linezolid resistance reservoirs at the human-animal-environment interfaces. Video Abstract.


Assuntos
Antibacterianos , Enterococcus faecium , Humanos , Animais , Suínos , Linezolida/farmacologia , Antibacterianos/farmacologia , Filogenia , Enterococcus faecalis/genética , Enterococcus faecium/genética , Farmacorresistência Bacteriana/genética , Patos , Água , Testes de Sensibilidade Microbiana
4.
Eur J Med Chem ; 269: 116326, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38513340

RESUMO

Bacterial infections cause a variety of life-threatening diseases, and the continuous evolution of drug-resistant bacteria poses an increasing threat to current antimicrobial regimens. Gram-positive bacteria (GPB) have a wide range of genetic capabilities that allow them to adapt to and develop resistance to practically all existing antibiotics. Oxazolidinones, a class of potent bacterial protein synthesis inhibitors with a unique mechanism of action involving inhibition of bacterial ribosomal translation, has emerged as the antibiotics of choice for the treatment of drug-resistant GPB infections. In this review, we discussed the oxazolidinone antibiotics that are currently on the market and in clinical development, as well as an updated synopsis of current advances on their analogues, with an emphasis on innovative strategies for structural optimization of linezolid, structure-activity relationship (SAR), and safety properties. We also discussed recent efforts aimed at extending the activity of oxazolidinones to gram-negative bacteria (GNB), antitumor, and coagulation factor Xa. Oxazolidinone antibiotics can accumulate in GNB by a conjugation to siderophore-mediated ß-lactamase-triggered release, making them effective against GNB.


Assuntos
Anti-Infecciosos , Oxazolidinonas , Antibacterianos/química , Oxazolidinonas/farmacologia , Oxazolidinonas/química , Linezolida/farmacologia , Relação Estrutura-Atividade , Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
5.
Future Microbiol ; 19: 449-459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497912

RESUMO

Aim: This study aimed to understand the current level of linezolid (LNZ) resistance in Streptococcus pneumoniae isolates reported over the past 10 years. Material & methods: An electronic search was conducted for the following keywords: ((Streptococcus pneumoniae [title/abstract]) OR (Pneumococcus [title/abstract]) OR (Pneumococci [title/abstract]) AND (linezolid [title/abstract]) OR (Zyvox [title/abstract])) OR (Zyvoxid [title/abstract])). Result: Out of all the studies, 80 had a cross-sectional design, while 11 followed a cohort approach. The prevalence of LNZ resistance among S. pneumoniae isolates ranged from 0% to 4.86%. Discussion: Urgent, high-powered, randomized, controlled trials with participants from endemic regions are needed to gain a comprehensive understanding of the impact on and significance of LNZ treatment to patients.


Assuntos
Antibacterianos , Streptococcus pneumoniae , Humanos , Linezolida/farmacologia , Streptococcus pneumoniae/genética , Antibacterianos/farmacologia , Prevalência , Estudos Transversais , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
6.
Sci Rep ; 14(1): 5342, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438563

RESUMO

The purpose of the present study was to evaluate the in vitro activity of tedizolid against several clinically significant species of Nocardia by comparing with that of linezolid. A total of 286 isolates of Nocardia species, including 236 clinical isolates recovered from patients in Japan and 50 strains (43 species) purchased from NITE Biological Resource Center, were studied. Antimicrobial susceptibility testing was performed using the broth microdilution method. For the 286 Nocardia isolates, the minimal inhibitory concentration (MIC)50 and MIC90 values of tedizolid were 0.25 and 0.5 µg/ml, and those of linezolid were 2 and 2 µg/ml, respectively. The distribution of the linezolid/tedizolid ratios (MICs of linezolid/MICs of tedizolid) showed that tedizolid had four- to eight-fold higher activity than linezolid in 96.1% (275/286) of Nocardia isolates. Both the tedizolid and linezolid MIC90 values for Nocardia brasiliensis were two-fold higher than those for the other Nocardia species. Both tedizolid and linezolid had low MIC values, 0.25-1 µg/ml and 0.5-4 µg/ml, respectively, even against nine isolates (five species) that were resistant to trimethoprim/sulfamethoxazole. One Nocardia sputorum isolate showed reduced susceptibility to tedizolid (4 µg/ml). Bioinformatics analysis suggests different resistance mechanisms than the oxazolidinone resistance seen in enterococci and staphylococci.


Assuntos
Nocardia , Oxazolidinonas , Humanos , Linezolida/farmacologia , Tetrazóis
7.
Biomed Pharmacother ; 172: 116228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320333

RESUMO

BACKGROUND: Linezolid has been reported to protect against chronic bone and joint infection. In this study, linezolid was loaded into the 3D printed poly (lactic-co-glycolic acid) (PLGA) scaffold with nano-hydroxyapatite (HA) to explore the effect of this composite scaffold on infected bone defect (IBD). METHODS: PLGA scaffolds were produced using the 3D printing method. Drug release of linezolid was analyzed by elution and high-performance liquid chromatography assay. PLGA, PLGA-HA, and linezolid-loaded PLGA-HA scaffolds, were implanted into the defect site of a rabbit radius defect model. Micro-CT, H&E, and Masson staining, and immunohistochemistry were performed to analyze bone infection and bone healing. Evaluation of viable bacteria was performed. The cytocompatibility of 3D-printed composite scaffolds in vitro was detected using human bone marrow mesenchymal stem cells (BMSCs). Long-term safety of the scaffolds in rabbits was evaluated. RESULTS: The linezolid-loaded PLGA-HA scaffolds exhibited a sustained release of linezolid and showed significant antibacterial effects. In the IBD rabbit models implanted with the scaffolds, the linezolid-loaded PLGA-HA scaffolds promoted bone healing and attenuated bone infection. The PLGA-HA scaffolds carrying linezolid upregulated the expression of osteogenic genes including collagen I, runt-related transcription factor 2, and osteocalcin. The linezolid-loaded PLGA-HA scaffolds promoted the proliferation and osteogenesis of BMSCs in vitro via the PI3K/AKT pathway. Moreover, the rabbits implanted with the linezolid-loaded scaffolds showed normal biochemical profiles and normal histology, which suggested the safety of the linezolid-loaded scaffolds. CONCLUSION: Overall, the linezolid-loaded PLGA-HA scaffolds fabricated by 3D printing exerts significant bone repair and anti-infection effects.


Assuntos
Durapatita , Tecidos Suporte , Animais , Coelhos , Humanos , Durapatita/química , Tecidos Suporte/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linezolida/farmacologia , Fosfatidilinositol 3-Quinases , Impressão Tridimensional
8.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38376228

RESUMO

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Linezolida/farmacologia , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Nitroimidazóis/farmacologia , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
9.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38317636

RESUMO

AIM: The poultry industry represents an important economic sector in Tunisia. This study aims to determine the antimicrobial resistance phenotypes and genotypes and virulence factors of enterococci collected from chicken caecum in Tunisia. METHODS AND RESULTS: Forty-nine composite chicken caecum samples were recovered in 49 different Tunisian farms (December 2019-March 2020). Each composite sample corresponds to six individual caecum from each farm. Composite samples were plated on Slanetz-Bartley agar both supplemented (SB-Van) and not supplemented (SB) with vancomycin and isolates were identified by matrix-assisted laser desorption/ionization time-of-flight. Antibiotic resistance and virulence genes were tested by Polymerase Chain Reaction (PCR) and sequencing and multilocus-sequence-typing of selected enterococci was performed. One hundred sixty seven enterococci of six different species were recovered. Acquired linezolid resistance was detected in 6 enterococci of 4/49 samples (8.1%): (A) four optrA-carrying Enterococcus faecalis isolates assigned to ST792, ST478, and ST968 lineages; (B) two poxtA-carrying Enterococcus faecium assigned to ST2315 and new ST2330. Plasmid typing highlighted the presence of the rep10, rep14, rep7, rep8, and pLG1 in these strains. One vancomycin-resistant E. faecium isolate (typed as ST1091) with vanA gene (included in Tn1546) was detected in SB-Van plates. The gelE, agg, esp, and hyl virulence genes were found in linezolid- and vancomycin-resistant enterococci. High resistance rates were identified in the enterococci recovered in SB plates: tetracycline [74.8%, tet(M) and tet(L) genes], erythromycin [65.9%, erm(B)], and gentamicin [37.1%, aac(6')-Ie-aph(2″)-Ia]. CONCLUSION: The detection of emerging mechanisms of resistance related to linezolid and vancomycin in the fecal enterococci of poultry farms has public health implications, and further surveillance should be carried out to control their dissemination by the food chain.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Animais , Linezolida/farmacologia , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/genética , Galinhas , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
10.
J Antimicrob Chemother ; 79(4): 846-850, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366373

RESUMO

OBJECTIVES: To investigate the global distribution of an optrA-harbouring linezolid-resistant Enterococcus faecalis ST476 clonal lineage. METHODS: Comprehensive searches of the NCBI database were performed to identify published peer-reviewed articles and genomes of E. faecalis ST476. Each genome was analysed for resistome, virulome, OptrA variant and optrA genetic contexts. A phylogenetic comparison of ST476 genomes with publicly available genomes of other STs was also performed. RESULTS: Sixty-six E. faecalis ST476 isolates from 15 countries (China, Japan, South Korea, Austria, Denmark, Spain, Czech Republic, Colombia, Tunisia, Italy, Malaysia, Belgium, Germany, United Arab Emirates and Switzerland) mainly of human and animal origin were identified. Thirty available ST476 genomes compared with genomes of 591 STs indicated a progressive radiation of E. faecalis STs starting from ST21. The closest ancestral node for ST476 was ST1238. Thirty E. faecalis ST476 genomes exhibited 3-916 SNP differences. Several antimicrobial resistance and virulence genes were conserved among the ST476 genomes. The optrA genetic context exhibited a high degree of or complete identity to the chromosomal transposon Tn6674. Only three isolates displayed an optrA-carrying plasmid with complete or partial Tn6674. The WT OptrA protein was most widespread in the ST476 lineage. CONCLUSIONS: Linezolid-resistant optrA-carrying E. faecalis of the clonal lineage ST476 is globally distributed in human, animal and environmental settings. The presence of such an emerging clone can be of great concern for public health. Thus, a One Health approach is needed to counteract the spread and the evolution of this enterococcal clonal lineage.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Humanos , Linezolida/farmacologia , Antibacterianos/farmacologia , Enterococcus faecalis , Filogenia , Farmacorresistência Bacteriana/genética , Enterococcus , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/veterinária , Enterococcus faecium/genética , Testes de Sensibilidade Microbiana
11.
Tuberculosis (Edinb) ; 146: 102482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364332

RESUMO

Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) causes opportunistic pulmonary and soft tissue infections that are difficult to cure with existing treatments. Omadacycline, a new tetracycline antibiotic, exhibits potent in vitro and in vivo activity against Mab. As regimens containing multiple antibiotics are required to produce a durable cure for Mab disease, we assessed efficacies of three three-drug combinations in a pre-clinical mouse model of pulmonary Mab disease to identify companion drugs with which omadacycline exhibits the highest efficacy. Additionally, we assessed the susceptibility of Mab recovered from mouse lungs after four weeks of exposure to the three triple-drug regimens. Among the three-drug regimens, omadacycline + imipenem + amikacin produced the largest reduction in Mab burden, whereas omadacycline + imipenem + linezolid exhibited the most effective early bactericidal activity. Omadacycline + linezolid + clofazimine, a regimen that can be administered orally, lacked early bactericidal activity but produced a gradual reduction in the lung Mab burden over time. The robust efficacy exhibited by these three regimens in the mouse model supports their further evaluation in patients with Mab lung disease. As we were unable to isolate drug-resistant Mab mutants at the completion of four weeks of treatment, these triple-drug combinations show promise of producing durable cure and minimizing selection of resistant mutants.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Animais , Camundongos , Linezolida/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tetraciclinas/farmacologia , Tetraciclinas/uso terapêutico , Imipenem/farmacologia , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
12.
Eur J Clin Microbiol Infect Dis ; 43(4): 767-775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372832

RESUMO

OBJECTIVE: The aim of the study was to determine the resistance profile of linezolid-resistant Enterococcus faecium (LREfm) and to investigate risk factors and outcomes associated with LREfm infections. MATERIAL AND METHODS: A prospective case-control study was undertaken (2019 to 2022) and included 202 patients with LREfm infections (cases) and 200 controls with LSEfm infections. Clinical data was prospectively collected and analysed for risk factors and outcomes. Antimicrobial susceptibility was performed, and resistance profile was studied using WHOnet. RESULTS: Risk factors associated with LREfm infection were site of infection UTI (OR 5.87, 95% CI 2.59-13.29, p ≤ 0.001), prior use of carbapenem (OR 2.85 95% CI 1.62-5.02, p ≤ 0.001) and linezolid (OR 10.13, 95% CI 4.13-24.82, p ≤ 0.001), use of central line (OR 5.54, 95% CI 2.35-13.09, p ≤ 0.001), urinary catheter (OR 0.29, 95% CI 0.12-0.70, p ≤ 0.001) and ventilation (OR 14.87, 95% CI 7.86-28.11, p ≤ 0.007). The hospital stay 8-14 days (< 0.001) prior to infection and the mortality rate (p = 0.003) were also significantly high among patients with LREfm infections. Linezolid and vancomycin resistance coexisted; further, MDR, XDR and PDR phenotypes were significantly higher among LREfm. CONCLUSION: This study provided insight into epidemiology of MDR LREfm in a setting where linezolid use is high. The main drivers of infections with LREfm are multiple, including use of carbapenems and linezolid. Invasive procedures and increased hospital stay facilitate spread through breach in infection control practises. As therapeutic options are limited, ongoing surveillance of LREfm and VRE is critical to guide appropriate use of linezolid and infection control policies.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Linezolida/farmacologia , Linezolida/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterococcus faecium/genética , Estudos de Casos e Controles , Centros de Atenção Terciária , Enterococcus , Carbapenêmicos/uso terapêutico , Fatores de Risco , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia
13.
J Glob Antimicrob Resist ; 36: 358-364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331029

RESUMO

OBJECTIVES: Staphylococcus epidermidis is a member of the human skin microbiome. However, in recent decades, multidrug-resistant and hospital-adapted S. epidermidis clones are increasingly involved in severe human infections associated with medical devices and in immunocompromised patients. In 2016, we reported that a linezolid- and methicillin-resistant S. epidermidis ST2 clone, bearing the G2576T mutation, was endemic in an Italian hospital since 2004. This study aimed to retrospectively analyse 34 linezolid- and methicillin-resistant S. epidermidis (LR-MRSE) strains collected from 2018 to 2021 from the same hospital. METHODS: LR-MRSE were typed by Pulsed-Field Gel Electrophoresis and multilocus sequence typing and screened for transferable linezolid resistance genes. Representative LR-MRSE were subjected to whole-genome sequencing (WGS) and their resistomes, including the presence of ribosomal mechanisms of linezolid resistance and of rpoB gene mutations conferring rifampin resistance, were investigated. RESULTS: ST2 lineage was still prevalent (19/34; 55.9%), but, over time, ST5 clone has been widespread too (15/34; 44.1%). Thirteen of the 34 isolates (38.2%) were positive for the cfr gene. Whole-genome sequencing analysis of relevant LR-MRSE displayed complex resistomes for the presence of several acquired antibiotic resistance genes, including the SCCmec type III (3A) and SCCmec type IV (2B) in ST2 and ST5 isolates, respectively. Bioinformatics and polymerase chain reaction (PCR) mapping also showed a plasmid-location of the cfr gene and the occurrence of previously undetected mutations in L3 (ST2 lineage) and L4 (ST3 lineage) ribosomal proteins and substitutions in the rpoB gene. CONCLUSION: The occurrence of LR-MRSE should be carefully monitored in order to prevent the spread of this difficult-to-treat pathogen and to preserve the efficacy of linezolid.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Linezolida/farmacologia , Staphylococcus epidermidis/genética , Staphylococcus aureus Resistente à Meticilina/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Resistência a Meticilina , Estudos Retrospectivos , Infecções Estafilocócicas/epidemiologia , Hospitais , Itália
14.
J Glob Antimicrob Resist ; 36: 336-344, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336229

RESUMO

OBJECTIVES: Linezolid is a last-resort antimicrobial in human clinical settings to treat multidrug-resistant Gram-positive bacterial infections. Mobile linezolid resistance genes (optrA, poxtA, and cfr) have been detected in various sources worldwide. However, the presence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in Japan remains uncertain. Therefore, we clarified the existence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in farm environments in Japan. METHODS: Enterococci isolates from faeces compost collected from 10 pig and 11 cattle farms in Japan in 2021 were tested for antimicrobial susceptibility and possession of mobile linezolid resistance genes. Whole-genome sequencing of optrA and/or poxtA genes positive-enterococci was performed. RESULTS: Of 103 enterococci isolates, 12 from pig farm compost were not-susceptible (2 resistant and 10 intermediate) to linezolid. These 12 isolates carried mobile linezolid resistance genes on plasmids or chromosomes (5 optrA-positive Enterococcus faecalis, 6 poxtA-positive E. hirae or E. thailandicus, and 1 optrA- and poxtA-positive E. faecium). The genetic structures of optrA- and poxA-carrying plasmids were almost identical to those reported in other countries. These plasmids were capable of transferring among E. faecium and E. faecalis strains. The optrA- and poxtA-positive E. faecium belonged to ST324 (clade A2), a high-risk multidrug-resistant clone. The E. faecalis carrying optrA gene on its chromosome was identified as ST593. CONCLUSIONS: Although linezolid is not used in livestock, linezolid-not-susceptible enterococci could be indirectly selected by frequently used antimicrobials, such as phenicols. Moreover, various enterococci species derived from livestock compost may serve as reservoirs of linezolid resistance genes carried on globally disseminated plasmids and multidrug-resistant high-risk clones.


Assuntos
Anti-Infecciosos , Compostagem , Enterococcus faecium , Animais , Humanos , Bovinos , Suínos , Linezolida/farmacologia , Enterococcus/genética , Antibacterianos/farmacologia , Gado , Fazendas , Japão , Enterococcus faecium/genética , Farmacorresistência Bacteriana/genética , Anti-Infecciosos/farmacologia
15.
Vet Res ; 55(1): 21, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365748

RESUMO

The emergence of transferable linezolid resistance genes poses significant challenges to public health, as it does not only confer linezolid resistance but also reduces susceptibility to florfenicol, which is widely used in the veterinary field. This study evaluated the genetic characteristics of linezolid-resistant Staphylococcus aureus strains isolated from pig carcasses and further clarified potential resistance and virulence mechanisms in a newly identified sequence type. Of more than 2500 strains isolated in a prior study, 15 isolated from pig carcasses exhibited linezolid resistance (minimum inhibitory concentration ≥ 8 mg/L). The strains were characterized in detail by genomic analysis. Linezolid-resistant S. aureus strains exhibited a high degree of genetic lineage diversity, with one strain (LNZ_R_SAU_64) belonging to ST8004, which has not been reported previously. The 15 strains carried a total of 21 antibiotic resistance genes, and five carried mecA associated with methicillin resistance. All strains harbored cfr and fexA, which mediate resistance to linezolid, phenicol, and other antibiotics. Moreover, the strains carried enterotoxin gene clusters, including the hemolysin, leukotoxin, and protease genes, which are associated with humans or livestock. Some genes were predicted to be carried in plasmids or flanked by ISSau9 and the transposon Tn554, thus being transmittable between staphylococci. Strains carrying the plasmid replicon repUS5 displayed high sequence similarity (99%) to the previously reported strain pSA737 in human clinical samples in the United States. The results illustrate the need for continuous monitoring of the prevalence and transmission of linezolid-resistant S. aureus isolated from animals and their products.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Doenças dos Suínos , Humanos , Animais , Suínos , Linezolida/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/genética , Genômica , República da Coreia , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana/genética , Doenças dos Suínos/epidemiologia
17.
BMC Infect Dis ; 24(1): 98, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238670

RESUMO

INTRODUCTION: Ventilator-associated pneumonia (VAP) is a prominent cause of morbidity and mortality in intensive care unit (ICU) patients. Due to the increase in Methicillin resistant Staphylococcus aureus infection, it is important to consider other more effective and safer alternatives compared to vancomycin. This motivates evaluating whether the use of an apparently more expensive drug such as linezolid can be cost-effective in Colombia. METHODS: A decision tree was used to simulate the results in terms of the cost and proportion of cured patients. In the simulation, patients can receive antibiotic treatment with linezolid (LZD 600 mg IV/12 h) or vancomycin (VCM 15 mg/kg iv/12 h) for 7 days, patients they can experience events adverse (renal failure and thrombocytopenia). The model was analyzed probabilistically, and a value of information analysis was conducted to inform the value of conducting further research to reduce current uncertainties in the evidence base. Cost-effectiveness was evaluated at a willingness-to-pay (WTP) value of US$5180. RESULTS: The mean incremental cost of LZD versus VCM is US$-517. This suggests that LZD is less costly. The proportion of patients cured when treated with LZD compared with VCM is 53 vs. 43%, respectively. The mean incremental benefit of LZD versus VCM is 10 This position of absolute dominance (LZD has lower costs and higher proportion of clinical cure than no supplementation) is unnecessary to estimate the incremental cost-effectiveness ratio. There is uncertainty with a 0.999 probability that LZD is more cost-effective than VCM. Our base-case results were robust to variations in all assumptions and parameters. CONCLUSION: LNZ is a cost-effective strategy for patients, ≥ 18 years of age, with VAP in Colombia- Our study provides evidence that can be used by decision-makers to improve clinical practice guidelines.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Pneumonia Estafilocócica , Pneumonia Associada à Ventilação Mecânica , Humanos , Linezolida/uso terapêutico , Linezolida/farmacologia , Vancomicina/uso terapêutico , Análise Custo-Benefício , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Colômbia , Infecção Hospitalar/tratamento farmacológico , Antibacterianos/farmacologia
18.
Microbiol Spectr ; 12(3): e0151522, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289721

RESUMO

The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) has sparked global concern due to the dwindling availability of effective antibiotics. To increase our treatment options, researchers have investigated naturally occurring antimicrobial compounds and have identified MC21-A (C58), which has potent antimicrobial activity against MRSA. Recently, we have devised total synthesis schemes for C58 and its chloro-analog, C59. Here, we report that both compounds eradicate 90% of the 39 MRSA isolates tested [MIC90 and minimum bactericidal concentration (MBC90)] at lower or comparable concentrations compared to several standard-of-care (SoC) antimicrobials including daptomycin, vancomycin, and linezolid. Furthermore, a stable, water-soluble sodium salt of C59, C59Na, demonstrates antimicrobial activity comparable to C59. C59, unlike vancomycin, kills stationary-phase MRSA in a dose-dependent manner and completely eradicates MRSA biofilms. In contrast to vancomycin, exposing MRSA to sub-MIC concentrations of C59 does not result in the emergence of spontaneous resistance. Similarly, in a multi-step study, C59 demonstrates a low propensity of resistance acquisition when compared to SoC antimicrobials, such as linezolid and clindamycin. Our findings suggest C58, C59, and C59Na are non-toxic to mammalian cells at concentrations that exert antimicrobial activity; the lethal dose at median cell viability (LD50) is at least fivefold higher than the MBC90 in the two mammalian cell lines tested. A morphological examination of the effects of C59 on a MRSA isolate suggests the inhibition of the cell division process as a mechanism of action. Our results demonstrate the potential of this naturally occurring compound and its analogs as non-toxic next-generation antimicrobials to combat MRSA infections. IMPORTANCE: The rapid emergence of methicillin-resistant Staphylococcus aureus (MRSA) isolates has precipitated a critical need for novel antibiotics. We have developed a one-pot synthesis method for naturally occurring compounds such as MC21-A (C58) and its chloro-analog, C59. Our findings demonstrate that these compounds kill MRSA isolates at lower or comparable concentrations to standard-of-care (SoC) antimicrobials. C59 eradicates MRSA cells in biofilms, which are notoriously difficult to treat with SoC antibiotics. Additionally, the lack of resistance development observed with C59 treatment is a significant advantage when compared to currently available antibiotics. Furthermore, these compounds are non-toxic to mammalian cell lines at effective concentrations. Our findings indicate the potential of these compounds to treat MRSA infections and underscore the importance of exploring natural products for novel antibiotics. Further investigation will be essential to fully realize the therapeutic potential of these next-generation antimicrobials to address the critical issue of antimicrobial resistance.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Bifenil Polibromatos , Infecções Estafilocócicas , Humanos , Vancomicina/farmacologia , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Infecções Estafilocócicas/epidemiologia
19.
Emerg Microbes Infect ; 13(1): 2292077, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055244

RESUMO

Invasive Staphylococcus aureus infections are associated with a high burden of disease, case fatality rate and healthcare costs. Oxazolidinones such as linezolid and tedizolid are considered potential treatment choices for conditions involving methicillin resistance or penicillin allergies. Additionally, they are being investigated as potential inhibitors of toxins in toxin-mediated diseases. In this study, linezolid and tedizolid were evaluated in an in vitro resistance development model for induction of resistance in S. aureus. Whole genome sequencing was conducted to elucidate resistance mechanisms through the identification of causal mutations. After inducing resistance to both linezolid and tedizolid, several partially novel single nucleotide variants (SNVs) were detected in the rplC gene, which encodes the 50S ribosome protein L3 in S. aureus. These SNVs were found to decrease the binding affinity, potentially serving as the underlying cause for oxazolidinone resistance. Furthermore, in opposite to linezolid we were able to induce phenotypically small colony variants of S. aureus after induction of resistance with tedizolid for the first time in literature. In summary, even if different antibiotic concentrations were required and SNVs were detected, the principal capacity of S. aureus to develop resistance to oxazolidinones seems to differ between linezolid and tedizolid in-vivo but not in vitro. Stepwise induction of resistance seems to be a time and cost-effective tool for assessing resistance evolution. Inducted-resistant strains should be examined and documented for epidemiological reasons, if MICs start to rise or oxazolidinone-resistant S. aureus outbreaks become more frequent.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Oxazolidinonas , Infecções Estafilocócicas , Humanos , Linezolida/farmacologia , Staphylococcus aureus , Oxazolidinonas/farmacologia , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
20.
Eur J Clin Microbiol Infect Dis ; 43(1): 17-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975976

RESUMO

PURPOSE: Vancomycin-resistant enterococci (VRE) are a leading cause of hospital-acquired infections with limited therapeutic options. Combination of at least two antimicrobials is a possible strategy to obtain rapid and sustained bactericidal effects and overcome the emergence of resistance. We revised the literature on linezolid synergistic properties from in vitro studies to assess its activity in combination with molecules belonging to other antibiotic classes against Enterococcus spp. METHODS: We performed a systematic review of the literature from three peer-reviewed databases including papers evaluating linezolid synergistic properties in vitro against Enterococcus spp. isolates. RESULTS: We included 206 Enterococcus spp. isolates (92 E. faecalis, 90 E. faecium, 2 E. gallinarum, 3 E. casseliflavus, 19 Enterococcus spp.) from 24 studies. When an isolate was tested with different combinations, each combination was considered independently for further analysis. The most frequent interaction was indifferent effect (247/343, 72% of total interactions). The highest synergism rates were observed when linezolid was tested in combination with rifampin (10/49, 20.4% of interactions) and fosfomycin (16/84, 19.0%, of interactions). Antagonistic effect accounted for 7/343 (2.0%) of total interactions. CONCLUSION: Our study reported overall limited synergistic in vitro properties of linezolid with other antibiotics when tested against Enterococcus spp. The clinical choice of linezolid in combination with other antibiotics should be guided by reasoned empiric therapy in the suspicion of a polymicrobial infection or targeted therapy on microbiological results, rather than on an intended synergistic effect of the linezolid-based combination.


Assuntos
Enterococcus faecium , Fosfomicina , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Linezolida/farmacologia , Linezolida/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fosfomicina/uso terapêutico , Rifampina/uso terapêutico , Testes de Sensibilidade Microbiana , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...